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Abstract

Machining of a material surface often produces large shear stress beneath the free surface, which causes dislocations
piled up along a slip plane near the surface until those dislocations are stopped by an obstacle and nucleates a mi-
crocrack at the subsurface. The nucleated microcrack due to dislocation pile-up is called a Zener—Stroh crack which has
many properties different to a conventional Griffith crack. In this paper, the physical mechanism of such microcrack
initiation has been discussed. Stress investigation on the problem of a subsurface Zener—Stroh crack inclined to the free
surface of a material has been carried out. By using the stress solution of a single dislocation in a half plane as the
Green’s function, the microcrack is simulated with distributed dislocations along the crack line. A set of singular
integral equations are then formulated and solved with numerical method. Results show that the influence of the free
surface on the stress intensity factors (SIFs) of the crack and the critical crack length greatly depends on the slant angle.
The free surface also brings intrinsic coupling phenomenon for the Mode I and Mode II SIFs. As a result this coupling
effect changes the fracture toughness of the material.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Surface machining process produces shear stress beneath the free surface of a material. Such induced
shear stress can be fairly large near the free surface. In many cases, this shear stress moves dislocations
along a slip plane parallel to the surface until the dislocations being stopped by an obstacle, such as a grain
boundary. When the piled-up dislocations reach a large amount, one way to release the high strain energy is
to nucleate a microcrack, as illustrated in Fig. 1. This type of subsurface microcrack was observed in the
grinding process of ceramics material recently (Zhang et al., 2003). This dislocation-based subsurface crack
is very different to the surface crack appearing in machining process or other rolling contact, which is
generally a interacting procedure between lubricating fluid and edge cracks (Bower, 1988; Hsia and Xu,
1996; Xu and Hsia, 1997). In fact, this microcrack nucleation mechanism was early developed by Zener

* Corresponding author. Tel.: +65-679-04726; fax: +65-679-11859/21859.
E-mail address: mzxiao@ntu.edu.sg (Z.M. Xiao).

0020-7683/$ - see front matter © 2004 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijsolstr.2004.04.040


mail to: mzxiao@ntu.edu.sg

5664 J.F. Zhao, Z.M. Xiao | International Journal of Solids and Structures 41 (2004) 5663-5675

S
—_—> surface

obstacle
slip plane

e SRR

»

shear stress t©
microcrack

Fig. 1. Nucleation of a subsurface microcrack.

(1948), who first reasoned that piled-up dislocations can nucleate a microcrack. Later, Stroh’s (1954, 1955)
independent analysis gave the amount of dislocations needed for such nucleation in the absence/presence of
a slip plane. This type of microcracks was named Zener—Stroh crack by following researchers (Weertman,
1986). There are also other similar nucleation mechanisms on such microcracks induced by dislocation pile-
up (Cottrell, 1958; Kikuchi et al., 1981).

Different to the famous Griffith crack which has a symmetric stress field, a Zener—Stroh crack in a
homogeneous material has an antisymmetric stress field. The total crack opening displacement in such a
crack is not zero. With these peculiar properties, the microcrack propagates faster than Griffith crack in
cyclic stress field, which often encountered in machining process (Weertman, 1986).

Two important parameters characterizing a Zener—Stroh crack are the stress intensity factor (SIF) and
the critical crack length. For a crack in a homogeneous material loaded by both net dislocations (with net
Burgers vector b') and external stress o, the energy stored in the system as a function of crack length is
schematically depicted in Fig. 2. The SIF Kzg due to the Zener—Stroh mechanism under the loading of net
dislocations 5T is given by

ub"
2(1 —v)y/ma’

where a is the half crack length, u is the shear modulus, and v is the Poisson’s ratio. At the same time the
SIF K due to the Griffith mechanism with a stress loading ¢ is given by

KG = O'\/E. (2)

Kzs = (1)
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Fig. 2. Critical crack length of Griffith-Zener—Stroh crack.
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As a result, the critical crack length a. for a crack controlled by these two mechanisms is determined
by

GbT
V2nag,

The above second order equation gives two solutions for a.: from Fig. 2, the smaller a_, is under Zener—
Stroh crack mechanism and is energywise stable; the larger a, corresponds to the Griffith crack mechanism
and is energywise unstable. The smaller value a_, controlled by Zener—Stroh mechanism gives the original
size of the crack; while the larger value a/, controlled by Griffith crack mechanism predicts the moment of
unstable crack propagation.

In recent years, more research work on Zener—Stroh (Z-S) crack can be found in open literature, such as
Cherepanov (1994) and Fan (1994) on interface Zener—Stroh crack, Xiao and Fan (1996) on a Z-S crack at
a tip of a rigid line inhomogeneity and near an interface (Fan and Xiao, 1997). They studied the required
dislocation amounts to form a Z-S crack, the critical crack length, the stress field and SIFs in the corre-
sponding structure configurations. However, the problem for a general subsurface Zener—Stroh crack is still
waiting to be investigated, while the case for a Griffith crack in such a geometric configuration has been
studied by various researchers (Hills and Comninou, 1985; Hearle and Johnson, 1985; Nowell and Hills,
1987). Different to the situation of an interface crack where the interface works as an obstacle to nucleate
the crack, a subsurface crack is nucleated in a new environment with the aid of very large shear stress due to
surface treatment. In the present paper, we start with the discussion on the factors influencing the sub-
surface microcrack nucleation based on the famous Zener—Stroh mechanism. Then the physical problem
for a general subsurface Z-S crack with a slanting angle to the surface is formulated. The effect of the free
surface on the Mode I and Mode II SIFs of the crack, as well as the critical crack length has been analyzed.
The influence of other parameters, such as the depth and slant angle of the crack, on the fracture behavior
of the crack is also studied and discussed.

2
(KZS —|— KG)2 = ( + o nacr> = Kg (3)

2. Crack initiation mechanism

Refer to Fig. 1, as discussed in Section 1, dislocations are moved along a slip plane by the shear force due
to surface machining. The piled-up dislocations create a singular stress field which pulls the material open.
A micro-Zener—Stroh crack is thus nucleated. For the current configuration in Fig. 1, the force on a single
dislocation comes from three sources: the driving force F; produced by the shear stress, the interaction force
Fy from other dislocations and the force F, from the grain boundary.

The force on the dislocation induced by the shear force can be calculated with Peach—Koehler formulae
(Dundurs, 1969):

F = byfa (4)

where b, is the component of Burgers vectors of a dislocation, and 7 is the shear stress which depends on the
manufacturing technology and the distance to the surface. For instance, polishing on the surface induces a
shear stress (Minowa and Sumino, 1992),
h3
-3 ,
(R + h2)1/2 (R? + h2)3/2

=R —(1+2v)+2(1+4v) (5)
where P is the normal scratching force and R is the radius of contact circle. F; generally holds a large value
at a small depth from the above equation and is the propelling force to pile the dislocations at the grain

boundary.
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The interaction force Fy has the form of

K ,ubi 1
Ej_zi:<2n(1—v)>Li’ (6)
where u is the shear modulus and K is a function to be given in detail later, and L, is the distance from the
considered dislocation to the ith dislocation. Because these dislocations locate in the same direction, the
interaction force is repulsive and resists the pile-up.

The force F, due to grain boundary is complicated and difficult to quantify. But the force from the grain
boundary should be related to the material properties, the shape and the size of the grain and distance from
the grain.

After the dislocation is moved, it reaches a equilibrium position and the total force on it is reduced to
zero,

F,—Fy—F, =0. (7)

With the increasing piled-up dislocations, a very large interaction force Fy is produced to cancel the force F;
from the shear stress to move more dislocations to the grain boundary. If the expression of F is found, the
above equation can be used to evaluate the number of piled-up dislocations. According to Cherepanov’s
(1994) analysis, when the number of piled up dislocations reach a certain value, a micro-Z-S crack will be
formed. The nucleated crack is loaded with a displacement loading bT (the total Burgers vectors of the
piled-up dislocations), provided there is no other stress tractions on the crack. The crack tip where the
dislocations enter the crack is called the blunt tip, while the other crack tip is called the sharp tip. Crack can
propagate from the sharp tip only.

3. Formulation on an inclined subsurface Zener—Stroh crack

In this section, stress investigation is to be done on a micro-Z-S crack initiated inclining to the free
surface with a slant angle 6, as shown in Fig. 3. The crack length is denoted as 24, and the distance from the
center of the crack to the surface is d. The global coordinate system x—y sits on the position as given in the
figure. To simulate the microcrack with distributed dislocations, we need the stress solution for a single

v

Fig. 3. An inclined Zener—Stroh crack near the free surface of a material.
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dislocation in a half plane as the Green function. The stress field due to a single dislocation located at a
point (&, #n) with Burgers vector components b, and b, in a half plane is given by (Hills et al., 1996)

Tul(x,y) = % [6x(8) G (x5 €, 1) + by(&) G (x5 €, ), (8a)
ny(x7y) = % [bx(é)GxW(X;y; 57 ’7) + by(é)GW}’(x;y; 57 ’1)]7 (8b)
ny(X,y) = %[bx(é)Gxxy(x y,é 7’) + b (6) wc}(x Vi E 77)] (80)

where G are the influence functions and « is the Kolosov’s constant. In order to facilitate the expression of
the traction free condition along the crack line, a new local coordinate system (%, y) is introduced in Fig. 3.
The origin of the system is the center of the crack, the angle between the new and old x-axes is the crack
slanting angle 0. The stress field due to the same dislocation in the new local coordinate system could be

written in
{ 735 (%, ) } _ 18 Gyl 55 €) { bi(&) } )
oy5(X, ) n(x+1) 78 G, 7 8) | Lbi(E)
The detailed expressions for the transformed and original influence functions G;; are given in Appendix A.
Now we assume the crack is simulated by distributed dislocations along the crack line, with B;(¢) and
B; (&) being the gliding and climbing Burger’s vector densities for the distributed dislocations, respectively.

The stress field in the absence of the crack is opposite equal to that generated by these distributed dislo-
cations:

. 2u a . . . RN

050) =~ [ [BO0(6.0:0) + B(OGip (k.05 D] (102)
R 2/1 +a R R N ~

050 =~ [ RO, 0:0) + B(HGs . 0:D) (10b)

In our analysis, the crack is purely dislocation loaded, without exterior stress loading. It is worth to note
that if exterior loading exists, it can be simply superposed into the formulation. As a result, for the current
case, the boundary conditions in the local coordinate system are:

In the far field,

gz =0, 05 =0. (11a)
Along the crack line,

055 =0, 0y3=0 d—a<i<d+aq (11b)

|_O'_,});J =0, |_05,5,J =0, x<d—aorx>d+a. (110)

where [f] is the jump of the function f. Accordingly Eqs. (10a) and (10b) are re-written as

| 806058+ B GG ] at =0, (122)

a

[ 30659 + BE)Gu 5 ]E =0 (12b)
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The microcrack should also satisfy the following two integral equations:

/ Y B(&)dE =T, (13a)

a

JRCICIE (13b)

a

where b and b are the net dislocations inside the crack.

4. Solution procedure of the integral equations

To normalize the integral interval from (—a,+a) to (—1,+1) in the integral, we introduce
s=¢la, t=3%/a (14)

Egs. (12a) and (12b) are then rewritten in terms of s and ¢ as

+1
[ (B5)Gus(6:5) + B5(6) G 15 ds =0, (15a)
+1
/ [B:(5)Giss(t; 8) + By (8) Gysy(£;5)] ds = 0. (15b)
-1
Since B;(s) and Bj;(s) are both singular at the two crack tips, solutions for them take the forms
__ DGs)
Bi(s) = ma (16a)
__Fi)
B;(s) —m7 (16b)
where D(s) and F(s) are unknown functions to be evaluated. Eqs. (13a) and (13b) are similarly rewritten as
+1 bT
/ Bu(s)ds = 2= (17a)
1 a
+1 bT
/ By(s)ds = (17b)
-1

Following the method developed by Erdogan and Gupta (1972) and Nowell and Hills (1987), the dis-
cretized forms of (15a), (15b), (17a) and (17b) are:

l N
v > [Gigs(ti,5)D(s:) + Gisylti, s)F (s:)] =0, k=1,...,N —1, (18a)

i=1

[Giijr(tkasi)D(si) + Gj’fcj'(tk,si)F(Si)] =0, k=1,...,N—-1, (18b)

N
=1

1
N 4

%_XN:F(S,-) =, (18¢)
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T bl

hd D(s;) = =~ 18d
§ 2D =" (184)

with
2i—1 )

s,v—cos(n T ), i=1,...,N, (18e)
t—cos( f) k=1 N-1 (18f)
k= 7'EN 5 =1,..., .

Eqgs. (18a)—(18d) altogether provide 2N linear algebraic equations to determine the 2N unknown values
D(s;) and F(s;). Once these values are obtained, the dislocation density functions can be Eqgs. (16a) and
(16b). As a Zener—Stroh crack always propagates from the sharp tip (Xiao et al., 2000), only SIFs of the
sharp tip are considered here. Once the dislocation density functions are obtained, the Mode I and Mode I1
SIFs at the sharp crack tip are given by (Weertman, 1996)

vV 2ubl./
K =1i 2“ 2”\/ T=9)By(s) = — 42 V™ pyy, (19)
sﬂl (k+1)
. 2uy2m _ 2ubly/ma

The value F (1) and D(1) are evaluated with Krenk interpolation formula (Krenk, 1975),

ZF sin { NN ! (2i — l)n}/sin <2i4N1 n), (20a)

1 & _[2N -1 (21
= ;D(si) sin [ N (2i — l)n}/sm < I4N n). (20b)
To find out the critical crack length a., at a given depth d, the following equation:
KI2 +K121 :K12c +KIZIC (21)

is used based on energy consideration.

5. Numerical examples and discussion

In order to have a more direct understanding on the influences of different parameters on the fracture
toughness of the crack, numerical calculations for various configurations have been performed. Figs. 4-7
show the variations of the SIFs at the sharp crack tip and the critical crack length with the slant angle 0 and
the crack depth d, respectively. In these calculations the shear and normal displacement loading selected for
the analysis are equal (b] = bjT,). And the calculated SIFs and critical crack lengths are normalized by those
of the same size crack in an isotropic infinite plane under the same loading, respectively.

In Fig. 4, the effect of the slant angle 6 on the Mode I and Mode II SIFs of a Z-S crack is depicted. In this
example the depth of the crack is taken as d = 1.1a, i.e., the crack is very near to the free surface of the
material. It is observed that both the Mode I and Mode II SIFs increase from values lower than that in
infinite plane to values higher than that in infinite plane, when the slant angle changes from 0 to . For the
two slant angles 6 = 0 and =, the crack is normal to the free surface. At this time we find the Mode I and
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Fig. 4. The SIFs of the crack with d = 1.1a as a function of the slant angle 0.
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Fig. 5. The SIFs of the crack as a function of the depth d with the slant angle 6 = n/10, 47/10 and 97/10, respectively.
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Fig. 6. Critical crack length as a function of the depth d with the slant angle 6§ = /10, 47/10 and 97/10, respectively.
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Fig. 8. The SIFs as a function of the depth d for 0 = 77/10: (a) caused by Mode I displacement loading; (b) caused by Mode II
displacement loading.
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Mode II STFs have the same value. This is because that at this condition, Egs. (18a)—(18d) can be separated
into two sets of independent equations, the two fracture modes are completely decoupled. In other words,
Mode I loading will not cause any Mode II SIF, and the vice versa. The same phenomenon was also found
for a subsurface Griffith crack (Nowell and Hills, 1987). For other 6 value, the crack inclines to the surface,
the Mode I and Mode II SIFs are coupled each other, because of the influence from the surface.

The influence of the crack depth d on the SIFs is illustrated in Fig. 5, for two different slant angles 7/10,
7/10 and 97/10. It is found that with the increasing depth, the SIFs approach their corresponding values in
an infinite plane. This trend is understandable as the depth increases, the effect of the free surface decreases.
Also it is observed that when d is small, the SIFs changes drastically with the depth d. It means the influence
of the free surface on the crack is very strong when the crack is near to the surface. The current variation
trend of the SIFs totally agrees with the study by Fan and Xiao (1997) for a Mode III Z-S crack, given as a
by-product of a Mode III Zener—Stroh crack near an interface.

The relation between the critical crack length and the depth d is plotted in Fig. 6. The slant angle 0 is
chosen as 7/10, 47/10 and 97/ 10, respectively. Because the critical crack length is determined by the energy
release rate, which relates to the square of SIFs, the trend is similar to that given in the previous figure for
the SIFs: the values approach to that in an infinite plane when the depth d increases. The variation of the
critical crack length with the slant angle is illustrated in Fig. 7. It can be seen that when the slant angle
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Fig. 9. The SIFs as a function of the slant angle 0 for d = 1.1a: (a) caused by pure Mode I displacement loading; (b) caused by pure
Mode II displacement loading.
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increase form 0 to 7, the critical crack length increase by a wide range: from less than half of that in an
infinite plane to several times larger than that in an infinite plane. This is due to the fact that a Z-S crack
propagates from the sharp crack tip only. For 0 = 0, the sharp tip is pointing away from the free surface;
while for 6 = =, the sharp tip is towards to the surface.

In order to study the coupling effect between the two fracture modes, displacement loading selected for
the calculations in Figs. 8 and 9 is either pure net climbing dislocations b (corresponding to pure normal
stress loading), or gliding dislocations b} (corresponding to pure shear stress loading). Fig. 8 shows that a
single mode type of loading generates both Mode I and Mode II SIFs for the Z-S crack with a slant angle
77/10, which is totally different to that in an infinite plane. With the increasing depth d, the Mode II SIF
induced by the Mode I loading or the Mode I SIF induced by the Mode II loading will decrease and finally
disappear. The variation of the SIFs with the slant angle is plotted in Fig. 9, for either pure 5! loading or
pure b! loading, respectively. When the crack is normal to the free surface, the two fracture modes are
decoupled completely.

6. Conclusion

A subsurface Zener—Stroh crack has been investigated from its nucleation to fracture behavior after its
initiation. In nucleation procedure, the equilibrium equation of the force on dislocations is given. When
the crack is nucleated, the influences of the free surface and the slant angle on the crack have been studied
in detail. It is found that when the crack is near to the free surface, the effect of the surface on the frac-
ture behavior is very large. Since a Z-S crack propagates from its sharp crack tip only, the slant angle plays
a key role on the SIFs and the critical crack length. Another physical feature is that the Mode I and Mode
IT SIFs of the crack are intrinsically coupled each other, as long as the crack is not normal to the free
surface.

Appendix A. The influence function and transformation in two coordinate systems

The influence function due to a single dislocation in half plane was cleared up by Hills et al. (1996),

1 22 1 22 48 48 1683 16832
wa: - -5-=1 - -2 == 1 2_ > 2 Al
o= (v n)( 7 r‘f+r§ i +r‘2‘+ i 5 ) (A1)
c __ X 20 xy 28 2% 8§x§+1252x2+16§xg 1683 A2)
TATA TR AT AT AT A T A |
1 22 1 22 128, 48 16823 16832
Gp=0—-—n —5+=L+5-=2 - 2 2 A3
=0 ’”( ATATETATTA AT A T ) (A3
3 2 3 28 23 1683 128x,  16&% 168
Gpw=—"3—"%3—""3 "2t e S (A4)
}"1 I’l I"2 1”2 I”z }"2 }"2 }”2 7‘2
G % 2x} Q_g_zx;+16¢x§_1252x2_16§x3+1652x3 (A3)
TTATA A AT AT A A A T A ~
1 22 1 263 4éx, 48 16883 168K
Gu=0-n -5+ +5 -2 224 = 2 2 A6
vy = (¥ n)( R R R M B i) (A.6)
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where
xi=x—-¢& xx=x+¢, (A.7)
n=G=&+0-n’ nBn=c++-—n (A.8)

The transformation from the global coordinate system x—y to the local coordinate system % can be
performed in two steps. Firstly, we express the stress field in global coordinate system with the position
expressed in local coordinate system, viz., 6;;(%, 7). The mathematical relations between these two systems
are

x=xcos0+d,

y=4xsin0,

¢=¢cosl+d, (A9)
n=_Esinf.

Then we calculate the shear and normal stresses in the local system with Mohr’s circle, viz., o3;(%, ¥), and
change the Burger’s vectors expressed in local systems.
The transformation of the influence function is

o3 (%, 9) cos? 0 sin® 0 sin20 | | ow(x, )
oi(%,9) | = sin? 0 cos?0  —sin20 | | ow(X,¥) |- (A.10)
0i5(%, 9) —sinflcos® sinfcos® cos20 | | on(X,P)

The transformation of Burgers vectors is
by | _|cosO —sin0| [ b
{by}_[sin(? COS@:|{b5,}. (A-11)
Finally, the stress field in the new local coordinate system is written as

{?Eﬁﬁ%F o Gg@y(ff,)?f? Gm(f,ﬁfg) {bﬁ()}. (A.12)
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