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An inclined Zener–Stroh crack near a free surface
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Abstract

Machining of a material surface often produces large shear stress beneath the free surface, which causes dislocations

piled up along a slip plane near the surface until those dislocations are stopped by an obstacle and nucleates a mi-

crocrack at the subsurface. The nucleated microcrack due to dislocation pile-up is called a Zener–Stroh crack which has

many properties different to a conventional Griffith crack. In this paper, the physical mechanism of such microcrack

initiation has been discussed. Stress investigation on the problem of a subsurface Zener–Stroh crack inclined to the free

surface of a material has been carried out. By using the stress solution of a single dislocation in a half plane as the

Green’s function, the microcrack is simulated with distributed dislocations along the crack line. A set of singular

integral equations are then formulated and solved with numerical method. Results show that the influence of the free

surface on the stress intensity factors (SIFs) of the crack and the critical crack length greatly depends on the slant angle.

The free surface also brings intrinsic coupling phenomenon for the Mode I and Mode II SIFs. As a result this coupling

effect changes the fracture toughness of the material.
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1. Introduction

Surface machining process produces shear stress beneath the free surface of a material. Such induced

shear stress can be fairly large near the free surface. In many cases, this shear stress moves dislocations

along a slip plane parallel to the surface until the dislocations being stopped by an obstacle, such as a grain

boundary. When the piled-up dislocations reach a large amount, one way to release the high strain energy is

to nucleate a microcrack, as illustrated in Fig. 1. This type of subsurface microcrack was observed in the

grinding process of ceramics material recently (Zhang et al., 2003). This dislocation-based subsurface crack
is very different to the surface crack appearing in machining process or other rolling contact, which is

generally a interacting procedure between lubricating fluid and edge cracks (Bower, 1988; Hsia and Xu,

1996; Xu and Hsia, 1997). In fact, this microcrack nucleation mechanism was early developed by Zener
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Fig. 1. Nucleation of a subsurface microcrack.
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(1948), who first reasoned that piled-up dislocations can nucleate a microcrack. Later, Stroh’s (1954, 1955)

independent analysis gave the amount of dislocations needed for such nucleation in the absence/presence of

a slip plane. This type of microcracks was named Zener–Stroh crack by following researchers (Weertman,
1986). There are also other similar nucleation mechanisms on such microcracks induced by dislocation pile-

up (Cottrell, 1958; Kikuchi et al., 1981).

Different to the famous Griffith crack which has a symmetric stress field, a Zener–Stroh crack in a

homogeneous material has an antisymmetric stress field. The total crack opening displacement in such a

crack is not zero. With these peculiar properties, the microcrack propagates faster than Griffith crack in

cyclic stress field, which often encountered in machining process (Weertman, 1986).

Two important parameters characterizing a Zener–Stroh crack are the stress intensity factor (SIF) and

the critical crack length. For a crack in a homogeneous material loaded by both net dislocations (with net
Burgers vector bT) and external stress r, the energy stored in the system as a function of crack length is

schematically depicted in Fig. 2. The SIF KZS due to the Zener–Stroh mechanism under the loading of net

dislocations bT is given by
KZS ¼
lbT

2ð1� mÞ ffiffiffiffiffiffi
pa

p ; ð1Þ
where a is the half crack length, l is the shear modulus, and m is the Poisson’s ratio. At the same time the

SIF KG due to the Griffith mechanism with a stress loading r is given by
KG ¼ r
ffiffiffiffiffiffi
pa

p
: ð2Þ
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+
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Fig. 2. Critical crack length of Griffith–Zener–Stroh crack.
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As a result, the critical crack length acr for a crack controlled by these two mechanisms is determined

by
ðKZS þ KGÞ2 ¼
GbTffiffiffiffiffiffiffiffiffiffiffi
2pacr

p
�

þ r
ffiffiffiffiffiffiffiffi
pacr

p
�2

¼ K2
C: ð3Þ
The above second order equation gives two solutions for acr: from Fig. 2, the smaller a�cr is under Zener–
Stroh crack mechanism and is energywise stable; the larger aþcr corresponds to the Griffith crack mechanism

and is energywise unstable. The smaller value a�cr controlled by Zener–Stroh mechanism gives the original
size of the crack; while the larger value aþcr controlled by Griffith crack mechanism predicts the moment of

unstable crack propagation.

In recent years, more research work on Zener–Stroh (Z-S) crack can be found in open literature, such as

Cherepanov (1994) and Fan (1994) on interface Zener–Stroh crack, Xiao and Fan (1996) on a Z-S crack at

a tip of a rigid line inhomogeneity and near an interface (Fan and Xiao, 1997). They studied the required

dislocation amounts to form a Z-S crack, the critical crack length, the stress field and SIFs in the corre-

sponding structure configurations. However, the problem for a general subsurface Zener–Stroh crack is still

waiting to be investigated, while the case for a Griffith crack in such a geometric configuration has been
studied by various researchers (Hills and Comninou, 1985; Hearle and Johnson, 1985; Nowell and Hills,

1987). Different to the situation of an interface crack where the interface works as an obstacle to nucleate

the crack, a subsurface crack is nucleated in a new environment with the aid of very large shear stress due to

surface treatment. In the present paper, we start with the discussion on the factors influencing the sub-

surface microcrack nucleation based on the famous Zener–Stroh mechanism. Then the physical problem

for a general subsurface Z-S crack with a slanting angle to the surface is formulated. The effect of the free

surface on the Mode I and Mode II SIFs of the crack, as well as the critical crack length has been analyzed.

The influence of other parameters, such as the depth and slant angle of the crack, on the fracture behavior
of the crack is also studied and discussed.
2. Crack initiation mechanism

Refer to Fig. 1, as discussed in Section 1, dislocations are moved along a slip plane by the shear force due

to surface machining. The piled-up dislocations create a singular stress field which pulls the material open.

A micro-Zener–Stroh crack is thus nucleated. For the current configuration in Fig. 1, the force on a single

dislocation comes from three sources: the driving force Fs produced by the shear stress, the interaction force

Fd from other dislocations and the force Fg from the grain boundary.

The force on the dislocation induced by the shear force can be calculated with Peach–Koehler formulae

(Dundurs, 1969):
Fs ¼ bys; ð4Þ
where by is the component of Burgers vectors of a dislocation, and s is the shear stress which depends on the

manufacturing technology and the distance to the surface. For instance, polishing on the surface induces a
shear stress (Minowa and Sumino, 1992),
s ¼ P
4pR2

"
� ð1þ 2mÞ þ 2ð1þ mÞ h

ðR2 þ h2Þ1=2
� 3

h3

ðR2 þ h2Þ3=2

#
; ð5Þ
where P is the normal scratching force and R is the radius of contact circle. Fs generally holds a large value

at a small depth from the above equation and is the propelling force to pile the dislocations at the grain
boundary.
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The interaction force Fd has the form of
Fd ¼
X
i

Klb2y
2pð1� mÞ

 !
1

Li
; ð6Þ
where l is the shear modulus and K is a function to be given in detail later, and Li is the distance from the

considered dislocation to the ith dislocation. Because these dislocations locate in the same direction, the

interaction force is repulsive and resists the pile-up.
The force Fg due to grain boundary is complicated and difficult to quantify. But the force from the grain

boundary should be related to the material properties, the shape and the size of the grain and distance from

the grain.

After the dislocation is moved, it reaches a equilibrium position and the total force on it is reduced to

zero,
Fs � Fd � Fg ¼ 0: ð7Þ
With the increasing piled-up dislocations, a very large interaction force Fd is produced to cancel the force Fs
from the shear stress to move more dislocations to the grain boundary. If the expression of Fg is found, the
above equation can be used to evaluate the number of piled-up dislocations. According to Cherepanov’s

(1994) analysis, when the number of piled up dislocations reach a certain value, a micro-Z-S crack will be

formed. The nucleated crack is loaded with a displacement loading bT (the total Burgers vectors of the

piled-up dislocations), provided there is no other stress tractions on the crack. The crack tip where the

dislocations enter the crack is called the blunt tip, while the other crack tip is called the sharp tip. Crack can

propagate from the sharp tip only.
3. Formulation on an inclined subsurface Zener–Stroh crack

In this section, stress investigation is to be done on a micro-Z-S crack initiated inclining to the free

surface with a slant angle h, as shown in Fig. 3. The crack length is denoted as 2a, and the distance from the

center of the crack to the surface is d. The global coordinate system x–y sits on the position as given in the

figure. To simulate the microcrack with distributed dislocations, we need the stress solution for a single
Fig. 3. An inclined Zener–Stroh crack near the free surface of a material.
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dislocation in a half plane as the Green function. The stress field due to a single dislocation located at a

point ðn; gÞ with Burgers vector components bx and by in a half plane is given by (Hills et al., 1996)
rxxðx; yÞ ¼
2l

pðjþ 1Þ ½bxðnÞGxxxðx; y; n; gÞ þ byðnÞGyxxðx; y; n; gÞ�; ð8aÞ

ryyðx; yÞ ¼
2l

pðjþ 1Þ ½bxðnÞGxyyðx; y; n; gÞ þ byðnÞGyyyðx; y; n; gÞ�; ð8bÞ

rxyðx; yÞ ¼
2l

pðjþ 1Þ ½bxðnÞGxxyðx; y; n; gÞ þ byðnÞGyxyðx; y; n; gÞ�; ð8cÞ
where G are the influence functions and j is the Kolosov’s constant. In order to facilitate the expression of

the traction free condition along the crack line, a new local coordinate system ðx̂; ŷÞ is introduced in Fig. 3.

The origin of the system is the center of the crack, the angle between the new and old x-axes is the crack

slanting angle h. The stress field due to the same dislocation in the new local coordinate system could be

written in
rŷŷðx̂; ŷÞ
rŷŷðx̂; ŷÞ

� �
¼ 2l

pðjþ 1Þ
Gx̂ŷŷðx̂; ŷ; n̂Þ Gŷŷŷðx̂; ŷ; n̂Þ
Gx̂x̂ŷðx̂; ŷ; n̂Þ Gŷx̂ŷðx̂; ŷ; n̂Þ

" #
bx̂ðn̂Þ
bŷðn̂Þ

� �
: ð9Þ
The detailed expressions for the transformed and original influence functions Gijk are given in Appendix A.
Now we assume the crack is simulated by distributed dislocations along the crack line, with Bx̂ðn̂Þ and

Bŷðn̂Þ being the gliding and climbing Burger’s vector densities for the distributed dislocations, respectively.

The stress field in the absence of the crack is opposite equal to that generated by these distributed dislo-

cations:
rŷŷðx̂Þ ¼ � 2l
pðjþ 1Þ

Z þa

�a
Bx̂ðn̂ÞGx̂ŷŷðx̂; 0; n̂Þ
h

þ Bŷðn̂ÞGŷŷŷðx̂; 0; n̂Þ
i
dn̂; ð10aÞ

rx̂ŷðx̂Þ ¼ � 2l
pðjþ 1Þ

Z þa

�a
Bx̂ðn̂ÞGx̂x̂ŷðx̂; 0; n̂Þ
h

þ Bŷðn̂ÞGŷx̂ŷðx̂; 0; n̂Þ
i
dn̂: ð10bÞ
In our analysis, the crack is purely dislocation loaded, without exterior stress loading. It is worth to note

that if exterior loading exists, it can be simply superposed into the formulation. As a result, for the current

case, the boundary conditions in the local coordinate system are:

In the far field,
rx̂ŷ ¼ 0; rŷŷ ¼ 0: ð11aÞ

Along the crack line,
rx̂ŷ ¼ 0; rŷŷ ¼ 0; d � a6 x̂6 d þ a; ð11bÞ

brx̂ŷc ¼ 0; brŷŷc ¼ 0; x̂ < d � a or x̂ > d þ a: ð11cÞ

where ½f � is the jump of the function f . Accordingly Eqs. (10a) and (10b) are re-written as
Z þa

�a
Bx̂ðn̂ÞGx̂ŷŷðx̂; n̂Þ
h

þ Bŷðn̂ÞGŷŷŷðx̂; n̂Þ
i
dn̂ ¼ 0; ð12aÞ

Z þa

�a
Bx̂ðn̂ÞGx̂x̂ŷðx̂; n̂Þ
h

þ Bŷðn̂ÞGŷx̂ŷðx̂; n̂Þ
i
dn̂ ¼ 0: ð12bÞ
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The microcrack should also satisfy the following two integral equations:
Z þa

�a
Bx̂ðn̂Þdn̂ ¼ bTx̂ ; ð13aÞ

Z þa

�a
Bŷðn̂Þdn̂ ¼ bTŷ ; ð13bÞ
where bTx̂ and bTŷ are the net dislocations inside the crack.
4. Solution procedure of the integral equations

To normalize the integral interval from ð�a;þaÞ to ð�1;þ1Þ in the integral, we introduce
s ¼ n̂=a; t ¼ x̂=a: ð14Þ

Eqs. (12a) and (12b) are then rewritten in terms of s and t as
Z þ1

�1

½Bx̂ðsÞGx̂ŷŷðt; sÞ þ BŷðsÞGŷŷŷðt; sÞ�ds ¼ 0; ð15aÞ

Z þ1

�1

½Bx̂ðsÞGx̂x̂ŷðt; sÞ þ BŷðsÞGŷx̂ŷðt; sÞ�ds ¼ 0: ð15bÞ
Since Bx̂ðsÞ and BŷðsÞ are both singular at the two crack tips, solutions for them take the forms
Bx̂ðsÞ ¼
DðsÞ

ð1� s2Þ1=2
; ð16aÞ

BŷðsÞ ¼
F ðsÞ

ð1� s2Þ1=2
; ð16bÞ
where DðsÞ and F ðsÞ are unknown functions to be evaluated. Eqs. (13a) and (13b) are similarly rewritten as
Z þ1

�1

Bx̂ðsÞds ¼
bTx̂
a

ð17aÞ

Z þ1

�1

BŷðsÞds ¼
bTŷ
a
: ð17bÞ
Following the method developed by Erdogan and Gupta (1972) and Nowell and Hills (1987), the dis-

cretized forms of (15a), (15b), (17a) and (17b) are:
1

N

XN
i¼1

½Gx̂ŷŷðtk; siÞDðsiÞ þ Gŷŷŷðtk; siÞF ðsiÞ� ¼ 0; k ¼ 1; . . . ;N � 1; ð18aÞ

1

N

XN
i¼1

½Gx̂x̂ŷðtk; siÞDðsiÞ þ Gŷx̂ŷðtk; siÞF ðsiÞ� ¼ 0; k ¼ 1; . . . ;N � 1; ð18bÞ

p
N

XN
i¼1

F ðsiÞ ¼
bTŷ
a
; ð18cÞ
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p
N

XN
i¼1

DðsiÞ ¼
bTx̂
a

ð18dÞ
with
si ¼ cos p
2i� 1

2N

� �
; i ¼ 1; . . . ;N ; ð18eÞ

tk ¼ cos p
k
N

� �
; k ¼ 1; . . . ;N � 1: ð18fÞ
Eqs. (18a)–(18d) altogether provide 2N linear algebraic equations to determine the 2N unknown values

DðsiÞ and F ðsiÞ. Once these values are obtained, the dislocation density functions can be Eqs. (16a) and

(16b). As a Zener–Stroh crack always propagates from the sharp tip (Xiao et al., 2000), only SIFs of the

sharp tip are considered here. Once the dislocation density functions are obtained, the Mode I and Mode II

SIFs at the sharp crack tip are given by (Weertman, 1996)
KI ¼ lim
s!1

2l
ffiffiffiffiffiffi
2p

p

jþ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1� sÞ

p
BŷðsÞ ¼ �

2lbTŷ
ffiffiffiffiffiffi
pa

p

ðjþ 1Þ F ð1Þ; ð19aÞ

KII ¼ lim
s!1

2l
ffiffiffiffiffiffi
2p

p

jþ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1� sÞ

p
Bx̂ðsÞ ¼ � 2lbTx̂

ffiffiffiffiffiffi
pa

p

ðjþ 1Þ Dð1Þ: ð19bÞ
The value F ð1Þ and Dð1Þ are evaluated with Krenk interpolation formula (Krenk, 1975),
F ð1Þ ¼ 1

N

XN
i¼1

F ðsiÞ sin
2N � 1

4N
ð2i

�
� 1Þp

��
sin

2i� 1

4N
p

� �
; ð20aÞ

F ð1Þ ¼ 1

N

XN
i¼1

DðsiÞ sin
2N � 1

4N
ð2i

�
� 1Þp

��
sin

2i� 1

4N
p

� �
: ð20bÞ
To find out the critical crack length acr at a given depth d, the following equation:
K2
I þ K2

II ¼ K2
IC þ K2

IIC ð21Þ

is used based on energy consideration.
5. Numerical examples and discussion

In order to have a more direct understanding on the influences of different parameters on the fracture
toughness of the crack, numerical calculations for various configurations have been performed. Figs. 4–7

show the variations of the SIFs at the sharp crack tip and the critical crack length with the slant angle h and
the crack depth d, respectively. In these calculations the shear and normal displacement loading selected for

the analysis are equal (bTx̂ ¼ bTŷ ). And the calculated SIFs and critical crack lengths are normalized by those

of the same size crack in an isotropic infinite plane under the same loading, respectively.

In Fig. 4, the effect of the slant angle h on the Mode I and Mode II SIFs of a Z-S crack is depicted. In this

example the depth of the crack is taken as d ¼ 1:1a, i.e., the crack is very near to the free surface of the

material. It is observed that both the Mode I and Mode II SIFs increase from values lower than that in
infinite plane to values higher than that in infinite plane, when the slant angle changes from 0 to p. For the
two slant angles h ¼ 0 and p, the crack is normal to the free surface. At this time we find the Mode I and
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Mode II SIFs have the same value. This is because that at this condition, Eqs. (18a)–(18d) can be separated

into two sets of independent equations, the two fracture modes are completely decoupled. In other words,

Mode I loading will not cause any Mode II SIF, and the vice versa. The same phenomenon was also found

for a subsurface Griffith crack (Nowell and Hills, 1987). For other h value, the crack inclines to the surface,
the Mode I and Mode II SIFs are coupled each other, because of the influence from the surface.

The influence of the crack depth d on the SIFs is illustrated in Fig. 5, for two different slant angles p=10,
p=10 and 9p=10. It is found that with the increasing depth, the SIFs approach their corresponding values in

an infinite plane. This trend is understandable as the depth increases, the effect of the free surface decreases.

Also it is observed that when d is small, the SIFs changes drastically with the depth d. It means the influence

of the free surface on the crack is very strong when the crack is near to the surface. The current variation

trend of the SIFs totally agrees with the study by Fan and Xiao (1997) for a Mode III Z-S crack, given as a

by-product of a Mode III Zener–Stroh crack near an interface.
The relation between the critical crack length and the depth d is plotted in Fig. 6. The slant angle h is

chosen as p=10, 4p=10 and 9p=10, respectively. Because the critical crack length is determined by the energy

release rate, which relates to the square of SIFs, the trend is similar to that given in the previous figure for

the SIFs: the values approach to that in an infinite plane when the depth d increases. The variation of the

critical crack length with the slant angle is illustrated in Fig. 7. It can be seen that when the slant angle
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Fig. 9. The SIFs as a function of the slant angle h for d ¼ 1:1a: (a) caused by pure Mode I displacement loading; (b) caused by pure

Mode II displacement loading.
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increase form 0 to p, the critical crack length increase by a wide range: from less than half of that in an

infinite plane to several times larger than that in an infinite plane. This is due to the fact that a Z-S crack

propagates from the sharp crack tip only. For h ¼ 0, the sharp tip is pointing away from the free surface;

while for h ¼ p, the sharp tip is towards to the surface.
In order to study the coupling effect between the two fracture modes, displacement loading selected for

the calculations in Figs. 8 and 9 is either pure net climbing dislocations bTŷ (corresponding to pure normal

stress loading), or gliding dislocations bTx̂ (corresponding to pure shear stress loading). Fig. 8 shows that a

single mode type of loading generates both Mode I and Mode II SIFs for the Z-S crack with a slant angle

7p=10, which is totally different to that in an infinite plane. With the increasing depth d, the Mode II SIF

induced by the Mode I loading or the Mode I SIF induced by the Mode II loading will decrease and finally

disappear. The variation of the SIFs with the slant angle is plotted in Fig. 9, for either pure bTŷ loading or

pure bTx̂ loading, respectively. When the crack is normal to the free surface, the two fracture modes are
decoupled completely.
6. Conclusion

A subsurface Zener–Stroh crack has been investigated from its nucleation to fracture behavior after its

initiation. In nucleation procedure, the equilibrium equation of the force on dislocations is given. When

the crack is nucleated, the influences of the free surface and the slant angle on the crack have been studied
in detail. It is found that when the crack is near to the free surface, the effect of the surface on the frac-

ture behavior is very large. Since a Z-S crack propagates from its sharp crack tip only, the slant angle plays

a key role on the SIFs and the critical crack length. Another physical feature is that the Mode I and Mode

II SIFs of the crack are intrinsically coupled each other, as long as the crack is not normal to the free

surface.

Appendix A. The influence function and transformation in two coordinate systems

The influence function due to a single dislocation in half plane was cleared up by Hills et al. (1996),
Gxxx ¼ ðy � gÞ
�
� 1

r21
� 2x21

r41
þ 1

r22
� 2x22

r42
� 4nx2

r42
þ 4n2

r42
þ 16nx32

r62
� 16n2x22

r62

�
; ðA:1Þ

Gyxx ¼ � x1
r21

þ 2x31
r41

þ x2
r22

� 2n
r22

� 2x32
r42

� 8nx22
r42

þ 12n2x2
r42

þ 16nx42
r62

� 16n2x32
r62

; ðA:2Þ

Gxyy ¼ ðy � gÞ
�
� 1

r21
þ 2x21

r41
þ 1

r22
� 2x22

r42
þ 12nx2

r42
� 4n2

r42
� 16nx32

r62
þ 16n2x22

r62

�
; ðA:3Þ

Gyyy ¼
3x1
r21

� 2x31
r41

� 3x2
r22

� 2n
r22

þ 2x32
r42

þ 16nx22
r42

� 12n2x2
r42

� 16nx42
r62

þ 16n2x32
r62

; ðA:4Þ

Gxxy ¼ � x1
r21

þ 2x31
r41

þ x2
r22

� 2n
r22

� 2x32
r42

þ 16nx22
r42

� 12n2x2
r42

� 16nx42
r62

þ 16n2x32
r62

; ðA:5Þ

Gyxy ¼ ðy � gÞ
�
� 1

2
þ 2x21

4
þ 1

2
� 2x22

4
� 4nx2

4
þ 4n2

4
þ 16nx32

6
� 16n2x22

6

�
; ðA:6Þ
r1 r1 r2 r2 r2 r2 r2 r2
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where
x1 ¼ x� n; x2 ¼ xþ n; ðA:7Þ

r21 ¼ ðx� nÞ2 þ ðy � gÞ2; r22 ¼ ðxþ nÞ2 þ ðy � gÞ2: ðA:8Þ

The transformation from the global coordinate system x–y to the local coordinate system x̂–ŷ can be

performed in two steps. Firstly, we express the stress field in global coordinate system with the position

expressed in local coordinate system, viz., rijðx̂; ŷÞ. The mathematical relations between these two systems
are
x ¼ x̂ cos hþ d;
y ¼ x̂ sin h;
n ¼ n̂ cos hþ d;
g ¼ n̂ sin h:

8>><
>>: ðA:9Þ
Then we calculate the shear and normal stresses in the local system with Mohr’s circle, viz., rî̂jðx̂; ŷÞ, and
change the Burger’s vectors expressed in local systems.

The transformation of the influence function is
rx̂x̂ðx̂; ŷÞ
rŷŷðx̂; ŷÞ
rx̂ŷðx̂; ŷÞ

2
64

3
75 ¼

cos2 h sin2 h sin 2h
sin2 h cos2 h � sin 2h

� sin h cos h sin h cos h cos 2h

2
4

3
5 rxxðx̂; ŷÞ

ryyðx̂; ŷÞ
rxyðx̂; ŷÞ

2
64

3
75: ðA:10Þ
The transformation of Burgers vectors is
bx
by

� �
¼ cos h � sin h

sin h cos h

� �
bx̂
bŷ

� �
: ðA:11Þ
Finally, the stress field in the new local coordinate system is written as
rŷŷðx̂; ŷÞ
rŷŷðx̂; ŷÞ

� �
¼ 2l

pðjþ 1Þ
Gx̂ŷŷðx̂; ŷ; n̂Þ Gŷŷŷðx̂; ŷ; n̂Þ
Gx̂x̂ŷðx̂; ŷ; n̂Þ Gŷx̂ŷðx̂; ŷ; n̂Þ

" #
bx̂ðn̂Þ
bŷðn̂Þ

� �
: ðA:12Þ
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